Skip to content

Tutorial Step3

vtk-examples/Cxx/Tutorial/Tutorial_Step3

Description

This example demonstrates how to use multiple renderers within a render window.

Other languages

See (Python)

Question

If you have a question about this example, please use the VTK Discourse Forum

Code

Tutorial_Step3.cxx

/*=========================================================================

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/

// First include the required header files for the VTK classes we are using.
#include <vtkActor.h>
#include <vtkCamera.h>
#include <vtkConeSource.h>
#include <vtkNamedColors.h>
#include <vtkNew.h>
#include <vtkPolyDataMapper.h>
#include <vtkProperty.h>
#include <vtkRenderWindow.h>
#include <vtkRenderer.h>

int main(int, char*[])
{
  vtkNew<vtkNamedColors> colors;

  //
  // Next we create an instance of vtkConeSource and set some of its
  // properties. The instance of vtkConeSource "cone" is part of a
  // visualization pipeline (it is a source process object); it produces data
  // (output type is vtkPolyData) which other filters may process.
  //
  vtkNew<vtkConeSource> cone;
  cone->SetHeight(3.0);
  cone->SetRadius(1.0);
  cone->SetResolution(10);

  //
  // In this example we terminate the pipeline with a mapper process object.
  // (Intermediate filters such as vtkShrinkPolyData could be inserted in
  // between the source and the mapper.)  We create an instance of
  // vtkPolyDataMapper to map the polygonal data into graphics primitives. We
  // connect the output of the cone source to the input of this mapper.
  //
  vtkNew<vtkPolyDataMapper> coneMapper;
  coneMapper->SetInputConnection(cone->GetOutputPort());

  //
  // Create an actor to represent the cone. The actor orchestrates rendering
  // of the mapper's graphics primitives. An actor also refers to properties
  // via a vtkProperty instance, and includes an internal transformation
  // matrix. We set this actor's mapper to be coneMapper which we created
  // above.
  //
  vtkNew<vtkActor> coneActor;
  coneActor->SetMapper(coneMapper);
  coneActor->GetProperty()->SetColor(colors->GetColor3d("MistyRose").GetData());

  //
  // Create two renderers and assign actors to them. A renderer renders into
  // a viewport within the vtkRenderWindow. It is part or all of a window on
  // the screen and it is responsible for drawing the actors it has.  We also
  // set the background color here. In this example we are adding the same
  // actor to two different renderers; it is okay to add different actors to
  // different renderers as well.
  //
  vtkNew<vtkRenderer> ren1;
  ren1->AddActor(coneActor);
  ren1->SetBackground(colors->GetColor3d("RoyalBlue").GetData());

  ren1->SetViewport(0.0, 0.0, 0.5, 1.0);

  vtkNew<vtkRenderer> ren2;
  ren2->AddActor(coneActor);
  ren2->SetBackground(colors->GetColor3d("DodgerBlue").GetData());
  ren2->SetViewport(0.5, 0.0, 1.0, 1.0);

  //
  // Finally we create the render window which will show up on the screen.
  // We put our renderer into the render window using AddRenderer. We also
  // set the size to be 300 pixels by 300.
  //
  vtkNew<vtkRenderWindow> renWin;
  renWin->AddRenderer(ren1);
  renWin->AddRenderer(ren2);
  renWin->SetSize(600, 300);
  renWin->SetWindowName("Tutorial_Step3");

  //
  // Make one view 90 degrees from other.
  //
  ren1->ResetCamera();
  ren1->GetActiveCamera()->Azimuth(90);

  //
  // Now we loop over 360 degrees and render the cones each time.
  //
  for (int i = 0; i < 360; ++i)
  {
    // render the image
    renWin->Render();
    // rotate the active camera by one degree
    ren1->GetActiveCamera()->Azimuth(1);
    ren2->GetActiveCamera()->Azimuth(1);
  }

  return EXIT_SUCCESS;
}

CMakeLists.txt

cmake_minimum_required(VERSION 3.12 FATAL_ERROR)

project(Tutorial_Step3)

find_package(VTK COMPONENTS 
)

if (NOT VTK_FOUND)
  message(FATAL_ERROR "Tutorial_Step3: Unable to find the VTK build folder.")
endif()

# Prevent a "command line is too long" failure in Windows.
set(CMAKE_NINJA_FORCE_RESPONSE_FILE "ON" CACHE BOOL "Force Ninja to use response files.")
add_executable(Tutorial_Step3 MACOSX_BUNDLE Tutorial_Step3.cxx )
  target_link_libraries(Tutorial_Step3 PRIVATE ${VTK_LIBRARIES}
)
# vtk_module_autoinit is needed
vtk_module_autoinit(
  TARGETS Tutorial_Step3
  MODULES ${VTK_LIBRARIES}
)

Download and Build Tutorial_Step3

Click here to download Tutorial_Step3 and its CMakeLists.txt file. Once the tarball Tutorial_Step3.tar has been downloaded and extracted,

cd Tutorial_Step3/build

If VTK is installed:

cmake ..

If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:

cmake -DVTK_DIR:PATH=/home/me/vtk_build ..

Build the project:

make

and run it:

./Tutorial_Step3

WINDOWS USERS

Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.