SpikeFran
vtk-examples/Cxx/VisualizationAlgorithms/SpikeFran
Description¶
This examples uses glyphs to indicate surface normals on model of human face. Glyph positions are randomly selected.
Info
See Figure 6-30 in Chapter 6 the VTK Textbook.
Question
If you have a question about this example, please use the VTK Discourse Forum
Code¶
SpikeFran.cxx
#include <vtkActor.h>
#include <vtkCamera.h>
#include <vtkConeSource.h>
#include <vtkGlyph3D.h>
#include <vtkMaskPoints.h>
#include <vtkNamedColors.h>
#include <vtkNew.h>
#include <vtkPolyDataMapper.h>
#include <vtkPolyDataNormals.h>
#include <vtkPolyDataReader.h>
#include <vtkProperty.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkRenderer.h>
#include <vtkTransform.h>
#include <vtkTransformPolyDataFilter.h>
// This example demonstrates the use of glyphing. We also use a mask filter
// to select a subset of points to glyph.
// Read a data file. This originally was a Cyberware laser digitizer scan
// of Fran J.'s face. Surface normals are generated based on local geometry
// (i.e., the polygon normals surrounding each point are averaged). We flip
// the normals because we want them to point out from Fran's face.
//
int main(int argc, char* argv[])
{
if (argc < 2)
{
std::cout << "Usage: " << argv[0] << " fran_cut.vtk" << std::endl;
return EXIT_FAILURE;
}
vtkNew<vtkNamedColors> colors;
vtkNew<vtkPolyDataReader> fran;
fran->SetFileName(argv[1]);
vtkNew<vtkPolyDataNormals> normals;
normals->SetInputConnection(fran->GetOutputPort());
normals->FlipNormalsOn();
vtkNew<vtkPolyDataMapper> franMapper;
franMapper->SetInputConnection(normals->GetOutputPort());
vtkNew<vtkActor> franActor;
franActor->SetMapper(franMapper);
franActor->GetProperty()->SetColor(colors->GetColor3d("Flesh").GetData());
// We subsample the dataset because we want to glyph just a subset of
// the points. Otherwise the display is cluttered and cannot be easily
// read. The RandomModeOn and SetOnRatio combine to random select one out
// of every 10 points in the dataset.
//
vtkNew<vtkMaskPoints> ptMask;
ptMask->SetInputConnection(normals->GetOutputPort());
ptMask->SetOnRatio(10);
ptMask->RandomModeOn();
// In this case we are using a cone as a glyph. We transform the cone so
// its base is at 0,0,0. This is the point where glyph rotation occurs.
vtkNew<vtkConeSource> cone;
cone->SetResolution(6);
vtkNew<vtkTransform> transform;
transform->Translate(0.5, 0.0, 0.0);
vtkNew<vtkTransformPolyDataFilter> transformF;
transformF->SetInputConnection(cone->GetOutputPort());
transformF->SetTransform(transform);
// vtkGlyph3D takes two inputs: the input point set (SetInputConnection)
// which can be any vtkDataSet; and the glyph (SetSourceConnection) which
// must be a vtkPolyData. We are interested in orienting the glyphs by the
// surface normals that we previously generated.
vtkNew<vtkGlyph3D> glyph;
glyph->SetInputConnection(ptMask->GetOutputPort());
glyph->SetSourceConnection(transformF->GetOutputPort());
glyph->SetVectorModeToUseNormal();
glyph->SetScaleModeToScaleByVector();
glyph->SetScaleFactor(0.004);
vtkNew<vtkPolyDataMapper> spikeMapper;
spikeMapper->SetInputConnection(glyph->GetOutputPort());
vtkNew<vtkActor> spikeActor;
spikeActor->SetMapper(spikeMapper);
spikeActor->GetProperty()->SetColor(
colors->GetColor3d("Emerald_Green").GetData());
// Create the RenderWindow, Renderer and both Actors
//
vtkNew<vtkRenderer> ren1;
vtkNew<vtkRenderWindow> renWin;
renWin->AddRenderer(ren1);
vtkNew<vtkRenderWindowInteractor> iren;
iren->SetRenderWindow(renWin);
// Add the actors to the renderer, set the background and size
//
ren1->AddActor(franActor);
ren1->AddActor(spikeActor);
renWin->SetSize(640, 480);
renWin->SetWindowName("SpikeFran");
ren1->SetBackground(colors->GetColor3d("SlateGray").GetData());
// render the image
//
renWin->Render();
ren1->GetActiveCamera()->Zoom(1.4);
ren1->GetActiveCamera()->Azimuth(110);
renWin->Render();
iren->Start();
return EXIT_SUCCESS;
}
CMakeLists.txt¶
cmake_minimum_required(VERSION 3.12 FATAL_ERROR)
project(SpikeFran)
find_package(VTK COMPONENTS
)
if (NOT VTK_FOUND)
message(FATAL_ERROR "SpikeFran: Unable to find the VTK build folder.")
endif()
# Prevent a "command line is too long" failure in Windows.
set(CMAKE_NINJA_FORCE_RESPONSE_FILE "ON" CACHE BOOL "Force Ninja to use response files.")
add_executable(SpikeFran MACOSX_BUNDLE SpikeFran.cxx )
target_link_libraries(SpikeFran PRIVATE ${VTK_LIBRARIES}
)
# vtk_module_autoinit is needed
vtk_module_autoinit(
TARGETS SpikeFran
MODULES ${VTK_LIBRARIES}
)
Download and Build SpikeFran¶
Click here to download SpikeFran and its CMakeLists.txt file. Once the tarball SpikeFran.tar has been downloaded and extracted,
cd SpikeFran/build
If VTK is installed:
cmake ..
If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:
cmake -DVTK_DIR:PATH=/home/me/vtk_build ..
Build the project:
make
and run it:
./SpikeFran
WINDOWS USERS
Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.