PBR Skybox
vtk-examples/Python/Rendering/PBR_Skybox
Description¶
Demonstrates physically based rendering using image based lighting and a skybox.
Physically based rendering sets color, metallicity and roughness of the object, sliders are provided so that you can experiment with the various parameters.
Image based lighting uses a cubemap texture to specify the environment. A Skybox is used to create the illusion of distant three-dimensional surroundings. Textures for the image based lighting and the skybox are supplied from an HDR or JPEG equirectangular Environment map or cubemap consisting of six image files.
A good source for Skybox HDRs and Textures is Poly Haven. Start with the 4K HDR versions of Skyboxes.
The parameters used to generate the example image are loaded from a JSON file with the same name as the example. In this case:
<DATA>/PBR_Skybox.json
Where <DATA>
is the path to vtk-examples/src/Testing/Data
.
By default we use the equirectangular file to generate the texture for the lighting and skybox. We have optionally provided six individual cubemap files to generate lighting and a skybox.
For information about the parameters in the JSON file, please see PBR_JSON_format.
Options¶
Positionals:
fileName The path to the JSON file containing the parameters.
Options:
-h,--help Print this help message and exit
-s,--surface The name of the surface. Overrides the surface entry in the json file.
-c,--use_cubemap Build the cubemap from the six cubemap files. Overrides the equirectangular entry in the json file.
-t, --use_tonemapping Use tone mapping.
Additionally, you can save a screenshot by pressing "k".
Further Reading¶
- Introducing Physically Based Rendering with VTK
- PBR Journey Part 1: High Dynamic Range Image Based Lighting with VTK
- PBR Journey Part 2 : Anisotropy model with VTK
- PBR Journey Part 3 : Clear Coat Model with VTK
- Object Shading Properties
Note
<DATA>/PBR_Skybox.json
assumes that the skyboxes and textures are in the subfoldersSkyboxes
andTextures
relative to this file. This allows you to copy this JSON file and the associated subfolders to any other location on your computer.- You can turn off the skybox in the JSON file by setting
"skybox":false
. Image based lighting will still be active.
Note
- The C++ example requires C++17 as
std::filesystem
is used. If your compiler does not support C++17 comment out the filesystem stuff.
Other languages
See (Cxx)
Question
If you have a question about this example, please use the VTK Discourse Forum
Code¶
PBR_Skybox.py
#!/usr/bin/env python3
import json
import sys
from pathlib import Path
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonComputationalGeometry import (
vtkParametricBoy,
vtkParametricMobius,
vtkParametricRandomHills,
vtkParametricTorus
)
from vtkmodules.vtkCommonCore import (
VTK_VERSION_NUMBER,
vtkCommand,
vtkFloatArray,
vtkVersion
)
from vtkmodules.vtkCommonDataModel import vtkPlane
from vtkmodules.vtkCommonTransforms import vtkTransform
from vtkmodules.vtkFiltersCore import (
vtkCleanPolyData,
vtkClipPolyData,
vtkPolyDataNormals,
vtkPolyDataTangents,
vtkTriangleFilter
)
from vtkmodules.vtkFiltersGeneral import vtkTransformPolyDataFilter
from vtkmodules.vtkFiltersModeling import vtkLinearSubdivisionFilter
from vtkmodules.vtkFiltersSources import (
vtkCubeSource,
vtkParametricFunctionSource,
vtkTexturedSphereSource
)
from vtkmodules.vtkIOImage import (
vtkHDRReader,
vtkJPEGWriter,
vtkImageReader2Factory,
vtkPNGWriter
)
from vtkmodules.vtkImagingCore import vtkImageFlip
from vtkmodules.vtkInteractionStyle import vtkInteractorStyleTrackballCamera
from vtkmodules.vtkInteractionWidgets import (
vtkCameraOrientationWidget,
vtkOrientationMarkerWidget,
vtkSliderRepresentation2D,
vtkSliderWidget
)
from vtkmodules.vtkRenderingAnnotation import vtkAxesActor
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkPolyDataMapper,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkSkybox,
vtkTexture,
vtkRenderer,
vtkWindowToImageFilter
)
from vtkmodules.vtkRenderingOpenGL2 import (
vtkCameraPass,
vtkLightsPass,
vtkOpaquePass,
vtkOverlayPass,
vtkRenderPassCollection,
vtkSequencePass,
vtkToneMappingPass
)
def get_program_parameters():
import argparse
description = 'Demonstrates physically based rendering, image based lighting and a skybox.'
epilogue = '''
Physically based rendering sets color, metallicity and roughness of the object.
Image based lighting uses a cubemap texture to specify the environment.
A Skybox is used to create the illusion of distant three-dimensional surroundings.
'''
parser = argparse.ArgumentParser(description=description, epilog=epilogue,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('file_name', help='The path to the JSON file.')
parser.add_argument('-s', '--surface', default='',
help='The name of the surface. Overrides the surface entry in the json file.')
parser.add_argument('-c', '--use_cubemap', action='store_true',
help='Build the cubemap from the six cubemap files.'
' Overrides the equirectangular entry in the json file.')
parser.add_argument('-t', '--use_tonemapping', action='store_true',
help='Use tone mapping.')
args = parser.parse_args()
return args.file_name, args.surface, args.use_cubemap, args.use_tonemapping
def main():
if not vtk_version_ok(9, 0, 0):
print('You need VTK version 9.0 or greater to run this program.')
return
colors = vtkNamedColors()
# Default background color.
colors.SetColor('BkgColor', [26, 51, 102, 255])
fn, surface_name, use_cubemap, use_tonemapping = get_program_parameters()
fn_path = Path(fn)
if not fn_path.suffix:
fn_path = fn_path.with_suffix(".json")
if not fn_path.is_file():
print('Unable to find: ', fn_path)
paths_ok, parameters = get_parameters(fn_path)
if not paths_ok:
return
# Check for missing parameters.
if 'bkgcolor' not in parameters.keys():
parameters['bkgcolor'] = 'BkgColor'
if 'objcolor' not in parameters.keys():
parameters['objcolor'] = 'White'
if 'skybox' not in parameters.keys():
parameters['skybox'] = False
if surface_name:
parameters['object'] = surface_name
res = display_parameters(parameters)
print('\n'.join(res))
print()
# Build the pipeline.
# ren1 is for the slider rendering,
# ren2 is for the object rendering.
ren1 = vtkRenderer()
# ren2 = vtkOpenGLRenderer()
ren2 = vtkRenderer()
ren1.SetBackground(colors.GetColor3d('Snow'))
ren2.SetBackground(colors.GetColor3d(parameters['bkgcolor']))
render_window = vtkRenderWindow()
# The order here is important.
# This ensures that the sliders will be in ren1.
render_window.AddRenderer(ren2)
render_window.AddRenderer(ren1)
ren1.SetViewport(0.0, 0.0, 0.2, 1.0)
ren2.SetViewport(0.2, 0.0, 1, 1)
interactor = vtkRenderWindowInteractor()
interactor.SetRenderWindow(render_window)
style = vtkInteractorStyleTrackballCamera()
interactor.SetInteractorStyle(style)
# Set up tone mapping, so we can vary the exposure.
# Custom Passes.
camera_p = vtkCameraPass()
seq = vtkSequencePass()
opaque = vtkOpaquePass()
lights = vtkLightsPass()
overlay = vtkOverlayPass()
passes = vtkRenderPassCollection()
passes.AddItem(lights)
passes.AddItem(opaque)
passes.AddItem(overlay)
seq.SetPasses(passes)
camera_p.SetDelegatePass(seq)
tone_mapping_p = vtkToneMappingPass()
tone_mapping_p.SetDelegatePass(camera_p)
if use_tonemapping:
ren2.SetPass(tone_mapping_p)
skybox = vtkSkybox()
irradiance = ren2.GetEnvMapIrradiance()
irradiance.SetIrradianceStep(0.3)
# Choose how to generate the skybox.
is_hdr = False
has_skybox = False
gamma_correct = False
if use_cubemap and 'cubemap' in parameters.keys():
print('Using the cubemap files to generate the environment texture.')
env_texture = read_cubemap(parameters['cubemap'])
if parameters['skybox']:
skybox.SetTexture(env_texture)
has_skybox = True
elif 'equirectangular' in parameters.keys():
print('Using the equirectangular file to generate the environment texture.')
env_texture = read_equirectangular_file(parameters['equirectangular'])
if parameters['equirectangular'].suffix.lower() in '.hdr .pic':
gamma_correct = True
is_hdr = True
if parameters['skybox']:
# Generate a skybox.
skybox.SetFloorRight(0, 0, 1)
skybox.SetProjection(vtkSkybox.Sphere)
skybox.SetTexture(env_texture)
has_skybox = True
else:
print('An environment texture is required,\n'
'please add the necessary equirectangular'
' or cubemap file paths to the json file.')
return
# Turn off the default lighting and use image based lighting.
ren2.AutomaticLightCreationOff()
ren2.UseImageBasedLightingOn()
if is_hdr:
ren2.UseSphericalHarmonicsOn()
ren2.SetEnvironmentTexture(env_texture, False)
else:
ren2.UseSphericalHarmonicsOff()
ren2.SetEnvironmentTexture(env_texture, True)
# Get the surface.
surface = parameters['object'].lower()
available_surfaces = {'boy', 'mobius', 'randomhills', 'torus', 'sphere', 'clippedsphere', 'cube', 'clippedcube'}
if surface not in available_surfaces:
print(f'The requested surface: {parameters["object"]} not found, reverting to Boys Surface.')
surface = 'boy'
if surface == 'mobius':
source = get_mobius()
elif surface == 'randomhills':
source = get_random_hills()
elif surface == 'torus':
source = get_torus()
elif surface == 'sphere':
source = get_sphere()
elif surface == 'clippedsphere':
source = get_clipped_sphere()
elif surface == 'cube':
source = get_cube()
elif surface == 'clippedcube':
source = get_clipped_cube()
else:
source = get_boy()
# Let's use a metallic surface
diffuse_coefficient = 1.0
roughness_coefficient = 0.0
metallic_coefficient = 1.0
mapper = vtkPolyDataMapper()
mapper.SetInputData(source)
actor = vtkActor()
actor.SetMapper(mapper)
# Enable PBR on the model.
actor.GetProperty().SetInterpolationToPBR()
# Configure the basic properties.
actor.GetProperty().SetColor(colors.GetColor3d(parameters['objcolor']))
actor.GetProperty().SetDiffuse(diffuse_coefficient)
actor.GetProperty().SetRoughness(roughness_coefficient)
actor.GetProperty().SetMetallic(metallic_coefficient)
ren2.AddActor(actor)
if has_skybox:
if gamma_correct:
skybox.GammaCorrectOn()
else:
skybox.GammaCorrectOff()
ren2.AddActor(skybox)
# Create the slider callbacks to manipulate various parameters.
step_size = 1.0 / 3
pos_y = 0.1
pos_x0 = 0.02
pos_x1 = 0.18
sw_p = SliderProperties()
sw_p.initial_value = 1.0
sw_p.maximum_value = 5.0
sw_p.title = 'Exposure'
# Screen coordinates.
sw_p.p1 = [pos_x0, pos_y]
sw_p.p2 = [pos_x1, pos_y]
sw_exposure = make_slider_widget(sw_p)
sw_exposure.SetInteractor(interactor)
sw_exposure.SetAnimationModeToAnimate()
if use_tonemapping:
sw_exposure.EnabledOn()
else:
sw_exposure.EnabledOff()
sw_exposure.SetCurrentRenderer(ren1)
sw_exposure_cb = SliderCallbackExposure(tone_mapping_p)
sw_exposure.AddObserver(vtkCommand.InteractionEvent, sw_exposure_cb)
pos_y += step_size
sw_p.initial_value = metallic_coefficient
sw_p.maximum_value = 1.0
sw_p.title = 'Metallicity'
# Screen coordinates.
sw_p.p1 = [pos_x0, pos_y]
sw_p.p2 = [pos_x1, pos_y]
sw_metallic = make_slider_widget(sw_p)
sw_metallic.SetInteractor(interactor)
sw_metallic.SetAnimationModeToAnimate()
sw_metallic.EnabledOn()
sw_metallic.SetCurrentRenderer(ren1)
sw_metallic_cb = SliderCallbackMetallic(actor.GetProperty())
sw_metallic.AddObserver(vtkCommand.InteractionEvent, sw_metallic_cb)
pos_y += step_size
sw_p.initial_value = roughness_coefficient
sw_p.title = 'Roughness'
# Screen coordinates.
sw_p.p1 = [pos_x0, pos_y]
sw_p.p2 = [pos_x1, pos_y]
sw_roughnesss = make_slider_widget(sw_p)
sw_roughnesss.SetInteractor(interactor)
sw_roughnesss.SetAnimationModeToAnimate()
sw_roughnesss.EnabledOn()
sw_roughnesss.SetCurrentRenderer(ren1)
sw_roughnesss_cb = SliderCallbackRoughness(actor.GetProperty())
sw_roughnesss.AddObserver(vtkCommand.InteractionEvent, sw_roughnesss_cb)
name = Path(sys.argv[0]).stem
render_window.SetSize(1000, 625)
render_window.Render()
render_window.SetWindowName(name)
if vtk_version_ok(9, 0, 20210718):
try:
cam_orient_manipulator = vtkCameraOrientationWidget()
cam_orient_manipulator.SetParentRenderer(ren2)
# Enable the widget.
cam_orient_manipulator.On()
except AttributeError:
pass
else:
axes = vtkAxesActor()
widget = vtkOrientationMarkerWidget()
rgba = [0.0, 0.0, 0.0, 0.0]
colors.GetColor("Carrot", rgba)
widget.SetOutlineColor(rgba[0], rgba[1], rgba[2])
widget.SetOrientationMarker(axes)
widget.SetInteractor(interactor)
widget.SetViewport(0.0, 0.0, 0.2, 0.2)
widget.EnabledOn()
widget.InteractiveOn()
print_callback = PrintCallback(interactor, name, 1, False)
# print_callback = PrintCallback(interactor, name + '.jpg', 1, False)
interactor.AddObserver('KeyPressEvent', print_callback)
interactor.Start()
def vtk_version_ok(major, minor, build):
"""
Check the VTK version.
:param major: Major version.
:param minor: Minor version.
:param build: Build version.
:return: True if the requested VTK version is greater or equal to the actual VTK version.
"""
needed_version = 10000000000 * int(major) + 100000000 * int(minor) + int(build)
try:
vtk_version_number = VTK_VERSION_NUMBER
except AttributeError: # as error:
ver = vtkVersion()
vtk_version_number = 10000000000 * ver.GetVTKMajorVersion() + 100000000 * ver.GetVTKMinorVersion() \
+ ver.GetVTKBuildVersion()
if vtk_version_number >= needed_version:
return True
else:
return False
def get_parameters(fn_path):
"""
Read the parameters from a JSON file and check that the file paths exist.
:param fn_path: The path to the JSON file.
:return: True if the paths correspond to files and the parameters.
"""
with open(fn_path) as data_file:
json_data = json.load(data_file)
parameters = dict()
# Extract the values.
keys_no_paths = {'title', 'object', 'objcolor', 'bkgcolor', 'skybox'}
keys_with_paths = {'cubemap', 'equirectangular', 'albedo', 'normal', 'material', 'coat', 'anisotropy', 'emissive'}
paths_ok = True
for k, v in json_data.items():
if k in keys_no_paths:
parameters[k] = v
continue
if k in keys_with_paths:
if k == 'cubemap':
if ('root' in v) and ('files' in v):
root = Path(v['root'])
if not root.exists():
print(f'Bad cubemap path: {root}')
paths_ok = False
elif len(v['files']) != 6:
print(f'Expect six cubemap file names.')
paths_ok = False
else:
cm = list(map(lambda p: root / p, v['files']))
for fn in cm:
if not fn.is_file():
paths_ok = False
print(f'Not a file {fn}')
if paths_ok:
parameters['cubemap'] = cm
else:
paths_ok = False
print('Missing the key "root" and/or the key "fĂles" for the cubemap.')
else:
fn = Path(v)
if not fn.exists():
print(f'Bad {k} path: {fn}')
paths_ok = False
else:
parameters[k] = fn
# Set Boy as the default surface.
if ('object' in parameters.keys() and not parameters['object']) or 'object' not in parameters.keys():
parameters['object'] = 'Boy'
return paths_ok, parameters
def display_parameters(parameters):
res = list()
parameter_keys = ['title', 'object', 'objcolor', 'bkgcolor', 'skybox', 'cubemap', 'equirectangular', 'albedo',
'normal', 'material', 'coat', 'anisotropy', 'emissive']
for k in parameter_keys:
if k != 'cubemap':
if k in parameters:
res.append(f'{k:15}: {parameters[k]}')
else:
if k in parameters:
for idx in range(len(parameters[k])):
if idx == 0:
res.append(f'{k:15}: {parameters[k][idx]}')
else:
res.append(f'{" " * 17}{parameters[k][idx]}')
return res
def read_cubemap(cubemap):
"""
Read six images forming a cubemap.
:param cubemap: The paths to the six cubemap files.
:return: The cubemap texture.
"""
cube_map = vtkTexture()
cube_map.CubeMapOn()
i = 0
for fn in cubemap:
# Read the images.
reader_factory = vtkImageReader2Factory()
img_reader = reader_factory.CreateImageReader2(str(fn))
img_reader.SetFileName(str(fn))
# Each image must be flipped in Y due to canvas
# versus vtk ordering.
flip = vtkImageFlip()
flip.SetInputConnection(img_reader.GetOutputPort(0))
flip.SetFilteredAxis(1) # flip y axis
cube_map.SetInputConnection(i, flip.GetOutputPort())
i += 1
cube_map.MipmapOn()
cube_map.InterpolateOn()
return cube_map
def read_equirectangular_file(fn_path):
"""
Read an equirectangular environment file and convert to a texture.
:param fn_path: The equirectangular file path.
:return: The texture.
"""
texture = vtkTexture()
suffix = fn_path.suffix.lower()
if suffix in ['.jpeg', '.jpg', '.png']:
reader_factory = vtkImageReader2Factory()
img_reader = reader_factory.CreateImageReader2(str(fn_path))
img_reader.SetFileName(str(fn_path))
texture.SetInputConnection(img_reader.GetOutputPort(0))
else:
reader = vtkHDRReader()
extensions = reader.GetFileExtensions()
# Check the image can be read.
if not reader.CanReadFile(str(fn_path)):
print('CanReadFile failed for ', fn_path)
return None
if suffix not in extensions:
print('Unable to read this file extension: ', suffix)
return None
reader.SetFileName(str(fn_path))
texture.SetColorModeToDirectScalars()
texture.SetInputConnection(reader.GetOutputPort())
texture.MipmapOn()
texture.InterpolateOn()
return texture
def get_boy():
u_resolution = 51
v_resolution = 51
surface = vtkParametricBoy()
source = vtkParametricFunctionSource()
source.SetUResolution(u_resolution)
source.SetVResolution(v_resolution)
source.GenerateTextureCoordinatesOn()
source.SetParametricFunction(surface)
source.Update()
# Build the tangents.
tangents = vtkPolyDataTangents()
tangents.SetInputConnection(source.GetOutputPort())
tangents.Update()
return tangents.GetOutput()
def get_mobius():
u_resolution = 51
v_resolution = 51
surface = vtkParametricMobius()
surface.SetMinimumV(-0.25)
surface.SetMaximumV(0.25)
source = vtkParametricFunctionSource()
source.SetUResolution(u_resolution)
source.SetVResolution(v_resolution)
source.GenerateTextureCoordinatesOn()
source.SetParametricFunction(surface)
source.Update()
# Build the tangents.
tangents = vtkPolyDataTangents()
tangents.SetInputConnection(source.GetOutputPort())
tangents.Update()
transform = vtkTransform()
transform.RotateX(-90.0)
transform_filter = vtkTransformPolyDataFilter()
transform_filter.SetInputConnection(tangents.GetOutputPort())
transform_filter.SetTransform(transform)
transform_filter.Update()
return transform_filter.GetOutput()
def get_random_hills():
u_resolution = 51
v_resolution = 51
surface = vtkParametricRandomHills()
surface.SetRandomSeed(1)
surface.SetNumberOfHills(30)
# If you want a plane
# surface.SetHillAmplitude(0)
source = vtkParametricFunctionSource()
source.SetUResolution(u_resolution)
source.SetVResolution(v_resolution)
source.GenerateTextureCoordinatesOn()
source.SetParametricFunction(surface)
source.Update()
# Build the tangents.
tangents = vtkPolyDataTangents()
tangents.SetInputConnection(source.GetOutputPort())
tangents.Update()
transform = vtkTransform()
transform.Translate(0.0, 5.0, 15.0)
transform.RotateX(-90.0)
transform_filter = vtkTransformPolyDataFilter()
transform_filter.SetInputConnection(tangents.GetOutputPort())
transform_filter.SetTransform(transform)
transform_filter.Update()
return transform_filter.GetOutput()
def get_torus():
u_resolution = 51
v_resolution = 51
surface = vtkParametricTorus()
source = vtkParametricFunctionSource()
source.SetUResolution(u_resolution)
source.SetVResolution(v_resolution)
source.GenerateTextureCoordinatesOn()
source.SetParametricFunction(surface)
source.Update()
# Build the tangents.
tangents = vtkPolyDataTangents()
tangents.SetInputConnection(source.GetOutputPort())
tangents.Update()
transform = vtkTransform()
transform.RotateX(-90.0)
transform_filter = vtkTransformPolyDataFilter()
transform_filter.SetInputConnection(tangents.GetOutputPort())
transform_filter.SetTransform(transform)
transform_filter.Update()
return transform_filter.GetOutput()
def get_sphere():
theta_resolution = 32
phi_resolution = 32
surface = vtkTexturedSphereSource()
surface.SetThetaResolution(theta_resolution)
surface.SetPhiResolution(phi_resolution)
# Now the tangents.
tangents = vtkPolyDataTangents()
tangents.SetInputConnection(surface.GetOutputPort())
tangents.Update()
return tangents.GetOutput()
def get_clipped_sphere():
theta_resolution = 32
phi_resolution = 32
surface = vtkTexturedSphereSource()
surface.SetThetaResolution(theta_resolution)
surface.SetPhiResolution(phi_resolution)
clip_plane = vtkPlane()
clip_plane.SetOrigin(0, 0.3, 0)
clip_plane.SetNormal(0, -1, 0)
clipper = vtkClipPolyData()
clipper.SetInputConnection(surface.GetOutputPort())
clipper.SetClipFunction(clip_plane)
clipper.GenerateClippedOutputOn()
# Now the tangents.
tangents = vtkPolyDataTangents()
tangents.SetInputConnection(clipper.GetOutputPort())
tangents.Update()
return tangents.GetOutput()
def get_cube():
surface = vtkCubeSource()
# Triangulate.
triangulation = vtkTriangleFilter()
triangulation.SetInputConnection(surface.GetOutputPort())
# Subdivide the triangles
subdivide = vtkLinearSubdivisionFilter()
subdivide.SetInputConnection(triangulation.GetOutputPort())
subdivide.SetNumberOfSubdivisions(3)
# Now the tangents.
tangents = vtkPolyDataTangents()
tangents.SetInputConnection(subdivide.GetOutputPort())
tangents.Update()
return tangents.GetOutput()
def get_clipped_cube():
surface = vtkCubeSource()
# Triangulate.
triangulation = vtkTriangleFilter()
triangulation.SetInputConnection(surface.GetOutputPort())
# Subdivide the triangles
subdivide = vtkLinearSubdivisionFilter()
subdivide.SetInputConnection(triangulation.GetOutputPort())
subdivide.SetNumberOfSubdivisions(5)
clip_plane = vtkPlane()
clip_plane.SetOrigin(0, 0.3, 0)
clip_plane.SetNormal(0, -1, -1)
clipper = vtkClipPolyData()
clipper.SetInputConnection(subdivide.GetOutputPort())
clipper.SetClipFunction(clip_plane)
clipper.GenerateClippedOutputOn()
cleaner = vtkCleanPolyData()
cleaner.SetInputConnection(clipper.GetOutputPort())
cleaner.SetTolerance(0.005)
cleaner.Update()
normals = vtkPolyDataNormals()
normals.SetInputConnection(cleaner.GetOutputPort())
normals.FlipNormalsOn()
normals.SetFeatureAngle(60)
# Now the tangents.
tangents = vtkPolyDataTangents()
tangents.SetInputConnection(normals.GetOutputPort())
tangents.ComputeCellTangentsOn()
tangents.ComputePointTangentsOn()
tangents.Update()
return tangents.GetOutput()
def uv_tcoords(u_resolution, v_resolution, pd):
"""
Generate u, v texture coordinates on a parametric surface.
:param u_resolution: u resolution
:param v_resolution: v resolution
:param pd: The polydata representing the surface.
:return: The polydata with the texture coordinates added.
"""
u0 = 1.0
v0 = 0.0
du = 1.0 / (u_resolution - 1)
dv = 1.0 / (v_resolution - 1)
num_pts = pd.GetNumberOfPoints()
t_coords = vtkFloatArray()
t_coords.SetNumberOfComponents(2)
t_coords.SetNumberOfTuples(num_pts)
t_coords.SetName('Texture Coordinates')
pt_id = 0
u = u0
for i in range(0, u_resolution):
v = v0
for j in range(0, v_resolution):
tc = [u, v]
t_coords.SetTuple(pt_id, tc)
v += dv
pt_id += 1
u -= du
pd.GetPointData().SetTCoords(t_coords)
return pd
class SliderProperties:
tube_width = 0.008
slider_length = 0.075
slider_width = 0.025
end_cap_length = 0.025
end_cap_width = 0.025
title_height = 0.025
label_height = 0.020
minimum_value = 0.0
maximum_value = 1.0
initial_value = 0.0
p1 = [0.02, 0.1]
p2 = [0.18, 0.1]
title = None
title_color = 'Black'
label_color = 'Black'
value_color = 'DarkSlateGray'
slider_color = 'BurlyWood'
selected_color = 'Lime'
bar_color = 'Black'
bar_ends_color = 'Indigo'
def make_slider_widget(properties):
colors = vtkNamedColors()
slider = vtkSliderRepresentation2D()
slider.SetMinimumValue(properties.minimum_value)
slider.SetMaximumValue(properties.maximum_value)
slider.SetValue(properties.initial_value)
slider.SetTitleText(properties.title)
slider.GetPoint1Coordinate().SetCoordinateSystemToNormalizedDisplay()
slider.GetPoint1Coordinate().SetValue(properties.p1[0], properties.p1[1])
slider.GetPoint2Coordinate().SetCoordinateSystemToNormalizedDisplay()
slider.GetPoint2Coordinate().SetValue(properties.p2[0], properties.p2[1])
slider.SetTubeWidth(properties.tube_width)
slider.SetSliderLength(properties.slider_length)
slider.SetSliderWidth(properties.slider_width)
slider.SetEndCapLength(properties.end_cap_length)
slider.SetEndCapWidth(properties.end_cap_width)
slider.SetTitleHeight(properties.title_height)
slider.SetLabelHeight(properties.label_height)
# Set the color properties
# Change the color of the title.
slider.GetTitleProperty().SetColor(colors.GetColor3d(properties.title_color))
# Change the color of the label.
slider.GetTitleProperty().SetColor(colors.GetColor3d(properties.label_color))
# Change the color of the bar.
slider.GetTubeProperty().SetColor(colors.GetColor3d(properties.bar_color))
# Change the color of the ends of the bar.
slider.GetCapProperty().SetColor(colors.GetColor3d(properties.bar_ends_color))
# Change the color of the knob that slides.
slider.GetSliderProperty().SetColor(colors.GetColor3d(properties.slider_color))
# Change the color of the knob when the mouse is held on it.
slider.GetSelectedProperty().SetColor(colors.GetColor3d(properties.selected_color))
# Change the color of the text displaying the value.
slider.GetLabelProperty().SetColor(colors.GetColor3d(properties.value_color))
slider_widget = vtkSliderWidget()
slider_widget.SetRepresentation(slider)
return slider_widget
class SliderCallbackExposure:
def __init__(self, tone_mapping_property):
self.tone_mapping_property = tone_mapping_property
def __call__(self, caller, ev):
slider_widget = caller
value = slider_widget.GetRepresentation().GetValue()
self.tone_mapping_property.SetExposure(value)
class SliderCallbackMetallic:
def __init__(self, actor_property):
self.actor_property = actor_property
def __call__(self, caller, ev):
slider_widget = caller
value = slider_widget.GetRepresentation().GetValue()
self.actor_property.SetMetallic(value)
class SliderCallbackRoughness:
def __init__(self, actor_property):
self.actor_property = actor_property
def __call__(self, caller, ev):
slider_widget = caller
value = slider_widget.GetRepresentation().GetValue()
self.actor_property.SetRoughness(value)
class PrintCallback:
def __init__(self, caller, file_name, image_quality=1, rgba=True):
"""
Set the parameters for writing the
render window view to an image file.
:param caller: The caller for the callback.
:param file_name: The image file name.
:param image_quality: The image quality.
:param rgba: The buffer type, (if true, there is no background in the screenshot).
"""
self.caller = caller
self.image_quality = image_quality
self.rgba = rgba
if not file_name:
self.path = None
print("A file name is required.")
return
pth = Path(file_name).absolute()
valid_suffixes = ['.jpeg', '.jpg', '.png']
if pth.suffix:
ext = pth.suffix.lower()
else:
ext = '.png'
if ext not in valid_suffixes:
ext = '.png'
self.suffix = ext
self.path = Path(str(pth)).with_suffix(ext)
def __call__(self, caller, ev):
if not self.path:
print("A file name is required.")
return
# Save the screenshot.
if caller.GetKeyCode() == "k":
w2if = vtkWindowToImageFilter()
w2if.SetInput(caller.GetRenderWindow())
w2if.SetScale(self.image_quality, self.image_quality)
if self.rgba:
w2if.SetInputBufferTypeToRGBA()
else:
w2if.SetInputBufferTypeToRGB()
# Read from the front buffer.
w2if.ReadFrontBufferOn()
w2if.Update()
if self.suffix in ['.jpeg', '.jpg']:
writer = vtkJPEGWriter()
else:
writer = vtkPNGWriter()
writer.SetFileName(self.path)
writer.SetInputData(w2if.GetOutput())
writer.Write()
print('Screenshot saved to:', self.path)
if __name__ == '__main__':
main()